We’ve already studied the different types of forces and learned how to draw free body diagrams.  We’re going to use those concepts to put forces into two different categories: internal and external forces. Internal forces include forces due to gravity, magnetism, electricity, and springs. External forces include applied, normal, tension, friction, drag and air resistance forces.


Please login or register to read the rest of this content.

The reason why we put the forces into two different categories will be obvious when we start solving physics problems, but for now, you can think of it like this: when total amount of work is done on an object is done by only internal forces, energy will change forms (like going from kinetic to potential energy), and the total amount of mechanical energy is conserved, and the forces are also conserved. When the total amount of work done is done by an external force, the forces are not conserved and the object with either gain or lose energy. Please login or register to read the rest of this content.


This is a nit-picky experiment that focuses on the energy transfer of rolling cars.  You’ll be placing objects and moving them about to gather information about the potential and kinetic energy.


We’ll also be taking data and recording the results as well as doing a few math calculations, so if math isn’t your thing, feel free to skip it.


Here’s what you need:


Please login or register to read the rest of this content.

What’s an inclined plane? Jar lids, spiral staircases, light bulbs, and key rings. These are all examples of inclined planes that wind around themselves.  Some inclined planes are used to lower and raise things (like a jack or ramp), but they can also used to hold objects together (like jar lids or light bulb threads).


Here’s a quick experiment you can do to show yourself how something straight, like a ramp, is really the same as a spiral staircase.


Please login or register to read the rest of this content.

When you toss down a ball, gravity pulls on the ball as it falls (creating kinetic energy) until it smacks the pavement, converting it back to potential energy as it bounces up again. This cycles between kinetic and potential energy as long as the ball continues to bounce.


Please login or register to read the rest of this content.

Note: Do the pendulum experiment first, and when you’re done with the heavy nut from that activity, just use it in this experiment.


You can easily create one of these mystery toys out of an old baking powder can, a heavy rock, two paper clips, and a rubber band (at least 3″ x 1/4″).  It will keep small kids and cats busy for hours.


Please login or register to read the rest of this content.

This is a very simple yet powerful demonstration that shows how potential energy and kinetic energy transfer from one to the other and back again, over and over.  Once you wrap your head around this concept, you’ll be well on your way to designing world-class roller coasters.


For these experiments, find your materials:


  • some string
  • a bit of tape
  • a washer or a weight of some kind
  • set of magnets (at least 6, but more is better)
Please login or register to read the rest of this content.

This experiment is for Advanced Students.There are several different ways of throwing objects. This is the only potato cannon we’ve found that does NOT use explosives, so you can be assured your kid will still have their face attached at the end of the day. (We’ll do more when we get to chemistry, so don’t worry!)


These nifty devices give off a satisfying *POP!!* when they fire and your backyard will look like an invasion of aliens from the French Fry planet when you’re done. Have your kids use a set of goggles and do all your experimenting outside.


Here’s what you need:


Please login or register to read the rest of this content.

Bobsleds use the low-friction surface of ice to coast downhill at ridiculous speeds. You start at the top of a high hill (with loads of potential energy) then slide down a icy hill til you transform all that potential energy into kinetic energy.  It’s one of the most efficient ways of energy transformation on planet Earth. Ready to give it a try?


This is one of those quick-yet-highly-satisfying activities which utilizes ordinary materials and turns it into something highly unusual… for example, taking aluminum foil and marbles and making it into a racecar.


While you can make a tube out of gift wrap tubes, it’s much more fun to use clear plastic tubes (such as the ones that protect the long overhead fluorescent lights). Find the longest ones you can at your local hardware store. In a pinch, you can slit the gift wrap tubes in half lengthwise and tape either the lengths together for a longer run or side-by-side for multiple tracks for races. (Poke a skewer through the rolls horizontally to make a quick-release gate.)


Here’s what you need:


  • aluminum foil
  • marbles (at least four the same size)
  • long tube (gift wrapping tube or the clear protective tube that covers fluorescent lighting is great)
Please login or register to read the rest of this content.

We’re going to build monster roller coasters in your house using just a couple of simple materials. You might have heard how energy cannot be created or destroyed, but it can be transferred or transformed (if you haven’t that’s okay – you’ll pick it up while doing this activity).


Roller coasters are a prime example of energy transfer: You start at the top of a big hill at low speeds (high gravitational potential energy), then race down a slope at break-neck speed (potential transforming into kinetic) until you bottom out and enter a loop (highest kinetic energy, lowest potential energy). At the top of the loop, your speed slows (increasing your potential energy), but then you speed up again and you zoom near the bottom exit of the loop (increasing your kinetic energy), and you’re off again!


Here’s what you need:


Please login or register to read the rest of this content.

Springs are used a lot in physics problems, because you can model things like car suspension systems, springs on door hinges, or even how flexible (or elastic) a material is by modeling it as a spring on paper for your analysis. Here's how: Please login or register to read the rest of this content.


Here’s how you can model a car suspension system using a simple spring model and a couple of energy equations:


Please login or register to read the rest of this content.

A lot of people’s worst nightmare is an elevator cable breaking while they are in the elevator. Let’s find out exactly how bad this type of accident can be from a physics perspective:


Please login or register to read the rest of this content.

Do you like water slides? Did you know that you can find your speed that you hit the water without even knowing the shape of the slide? Here’s how…


Please login or register to read the rest of this content.

Nothing says summer time fun than a home-built go-kart that can race down the driveway with just as much thrill as two story roller coasters.


A go-karts (also called “go-cart”) can be gravity powered (without a motor) or include electric or gas powered motors. The gravity powered kind are also known as Soap Box Derby racers, and are the simplest kind to make since all you need is wheels, a frame, and a good hill (and a helmet!).


Please login or register to read the rest of this content.

If you’ve ever thrown a ball down into the sand, you know it can bury itself below the surface. Here’s how you figure out the non-conservative forces into the equation of the sand exerting a force on the ball as it slows down and stops deep in the sand.


Please login or register to read the rest of this content.

Friction can be tricky to deal with, especially since it’s a non-conservative force (meaning that you can’t recover the energy from it for a useful purpose the way you can with potential and kinetic energy).


Please login or register to read the rest of this content.

Have you learned how to drive yet, or are you excited to learn? Here’s a question on the driver’s test that is really kind of scary from a physics point of view, but it will make a lot of sense once you see how it works. And might even keep you from speeding, now that you understand what can happen if you lock up your brakes while going too fast.


Please login or register to read the rest of this content.

How do you calculate the energies of particles going near the speed of light? It’s a little tricky, but you can do it if you have the right equation. Since the kinetic energy equation comes from Newton’s Laws of Motion, which don’t apply to particles moving near the speed of light, we have to add a correction factor from Einstein’s Theory of Relativity in order to compensate and make the equations accurate. Here’s the equation for particles going close to light speed:


Please login or register to read the rest of this content.