The words particle and wave are two words you’ll see in nearly every area of physics, but they are actually very different from each other. A particle is a tiny concentration of something that can transmit energy, and a wave is a broad distribution of energy that fills the space it passes through. We’re going to look at particles in more depth later, and instead focus on understanding waves.
Please login or register to read the rest of this content.


Humming birds are really fascinating, because they can beat their wings so fast! Here’s a quick way to calculate the frequency and period of a humming bird’s wings.
Please login or register to read the rest of this content.


Kids love swings, and it’s amazingly simple to find the frequency and period of the swing. Here’s how…
Please login or register to read the rest of this content.


Sound is a type of energy, and energy moves by waves. So sound moves from one place to another by waves; longitudinal waves to be more specific. So, how fast do sound waves travel? Well, that’s a bit of a tricky question. The speed of the wave depends on what kind of stuff the wave is moving through. The more dense (thicker) the material, the faster sound can travel through it.
Please login or register to read the rest of this content.


Sound moves faster in solid objects than it does in air because the molecules are very close together in a solid and very far apart in a gas. For example, sound travels at about 760 mph in air, 3300 mph in water, 11,400 mph in aluminum, and 27,000 mph in diamond!
Please login or register to read the rest of this content.


An echo is when a wave travels through one medium (like air) and then meets a different medium (like a cave wall). The sound wave bounces and reflects back to you.
Please login or register to read the rest of this content.


Let’s do a couple of simpler sample problems, and then I’ll show you how to do problems that are more complex and involve higher level math. First, let’s take a look at the wings of a bird in flight…
Please login or register to read the rest of this content.


Ocean waves travel on the surface of the water can be observed and measured. Let’s try one just before a storm…
Please login or register to read the rest of this content.


Ever gotten sea sick? It’s usually because the motion of what your body detects is different from what your eyes see. Let’s take a look at how you can calculate the wave speed by watching two boats bobbing up and down (without getting sick).
Please login or register to read the rest of this content.


Waves traveling on a tight string, like a climbing rope, are dependent on only two things: the tension of the rope and a physical property of the rope (like what it’s made out of, the diameter, etc.).
Please login or register to read the rest of this content.


Now it’s time for a little more math because the physics problems are going to get a little harder.
Please login or register to read the rest of this content.


If a wave can travel through mediums like air, water, strings, rocks, etc., then it makes sense that as the wave moves through these mediums, the tiny particles that make up the medium will also vibrate. In order for this to happen, the medium has to have a way for energy (both potential and kinetic) to be stored, so the medium has both inertia and elasticity.
Please login or register to read the rest of this content.