If you’ve ever wanted to make your own version of a volcano that burps and spit all over the place, then this is the experiment for you.  We used to teach kids how to make genuine Fire & Flame volcanoes, but parents weren’t too happy about the shower of sparks that hit the ceiling and fireballs that shot out of the thing… so we’ve toned it down a bit to focus more on the lava flow.


Please login or register to read the rest of this content.

You will be able to identify minerals by their colors and streaks, and be able to tell a sample of real gold from the fake look-alike called pyrite.


Please login or register to read the rest of this content.

By the end of this lab, you will be able to line up rocks according to how hard they are by using a specific scale. The scale goes from 1 to 10, with 10 being the hardest minerals.
Please login or register to read the rest of this content.


Today, you’ll learn what to look for in a broken mineral. There are different names for the types of breaks that a mineral can experience. You’ll need to ask a few important questions during your investigation, like, “What is the difference between mineral cleavage and fracture?”


Please login or register to read the rest of this content.

Your goal is to identify samples according to their reactivity with acid. Minerals that react are called chemical rocks, and minerals that don’t are called clastic rocks. Some chemical rocks contain carbonate minerals, like limestone, dolomite, and marble which react with the acid.
Please login or register to read the rest of this content.


Clastic rocks come in very different shapes and sizes, but they all have a few characteristics in common. A clast is a grain of sand, gravel, pebble, etc that makes up a rock. Clastic rocks look like they are made up of fragments of other rocks.


Please login or register to read the rest of this content.

Bituminous coal (also called black coal) is a soft, black organic sedimentary rock that contains 85% carbon. It’s a lower grade than anthracite coal, which contains 93% carbon. Bituminous coal can either be dull or shiny, whereas anthracite is hard and shiny. Lignite, a lower grade than bituminous, is a crumbly, black type of coal that only contains 72% carbon.


Please login or register to read the rest of this content.

Tenacity is a measure of how resistive a mineral is to breaking, bending, or being crushed. When you exceed that limit, fracture is how the mineral breaks once the tenacity (or tenacious) limit has been exceeded.


Please login or register to read the rest of this content.

Density can be found by weighing an object and dividing by the volume of the object, and for geologists, is the same thing as specific gravity. Water has a density of 1, which means that 1 gram of water takes up 1 cubic centimeter of space. Specific gravity is a number you get when you divide the density of an object by the density of water, which happens to be 1 gram/cm3.


Please login or register to read the rest of this content.

Luster is the way a mineral reflects light, and it depends on the surface reflectivity.


Please login or register to read the rest of this content.

Fluorescent minerals emit light when exposed to ultraviolet (UV) light, usually in a completely different color than when exposed to white light. UV is invisible to the human eye, and is the wavelength of light that is responsible for sunburns.


Please login or register to read the rest of this content.

A magnetic field is the area around a magnet or an electrical current that attracts or repels objects that are placed in the field. The closer the object is to the magnet, the more powerfully it’s going to experience the magnetic effect. Nearly all minerals that are magnetic have iron as a component.


Please login or register to read the rest of this content.

Out of all the kinds of sedimentary rocks, limestone makes up 10% by volume. People have used limestone in architecture like the Great Pyramids, castles in Europe, and in early 20th century buildings like banks and train stations. Today we use it as white filler in toothpaste, to build roads, make tiles, in cosmetics, and added to breads and cereal as a cheap source of calcium.


Please login or register to read the rest of this content.

Sandstone is a common sedimentary rock that’s composed of quartz crystals cemented together by silica, calcium carbonate, clay or iron oxide. Fossils are often found in sandstone.


Please login or register to read the rest of this content.

Popcorn rocks are different than regular dolomite samples because they have a lot more magnesium inside. This was first discovered by a geology professor in the 1980s who was dissolving the limestone around fossils he was studying in his rock samples. When he placed samples of this type in the acid to dissolve, it didn’t dissolve but instead grew new crystals!


Please login or register to read the rest of this content.

Today we’re making polyurethane foam, which looks a lot like pumice in that it’s lightweight, porous, and cream colored. Polyurethane is a polymer that is used to make a variety of products, including seat cushions, insulation panels, seals and gaskets, roller coaster wheels, escalator rollers, carpet underlay, and wheels for skateboards.
Please login or register to read the rest of this content.


You’ll learn about the key ingredient in an explosive eruption like the one we’re simulating in lab today.


Please login or register to read the rest of this content.

Today you get to make your own glop of earth that holds an embedded fossil. If you close the dough over the top of the fossil, you can hammer it apart after it’s had two days to dry.


Please login or register to read the rest of this content.

Field trip time! Today you get to sift through sand and excavate your rock samples right on your own desk. This inexpensive set of rock samples contain pieces of not only fossils and gems, but true minerals and rocks also, so take your time and follow the video instructions carefully.


Please login or register to read the rest of this content.

The Cave of Crystals in Mexico has the world’s largest selenite (gypsum) crystals about 1,000 feet below the surface in a hot cavern. Some of the crystals are over 50 tons in weight and 35 feet in length!
Please login or register to read the rest of this content.


Today you get to sort and identify as many rocks as you can as you test for streak, hardness, fluorescence, color, magnetism, chemical reactions, and more with this unique set of rocks. You may have to do a little research on the ones that are not yet familiar to you!


Please login or register to read the rest of this content.

When two blocks of the Earth slip past each other suddenly, that’s what we call an earthquake! From a physics point of view, earthquakes are a release of the elastic potential energy that builds up. Most energy is released as heat, not as shaking, during an earthquake. 90% of all earthquakes happen along the Ring of Fire, which is the active zone that surrounds the Pacific Ocean.


Please login or register to read the rest of this content.

This is a recording of a recent live teleclass I did with thousands of kids from all over the world. I’ve included it here so you can participate and learn!


Discover the world of clean, renewable energy that scientists are developing today! Explore how they are harnessing the energy of tides and waves, lean how cars can run on just sunlight and water, tour a hydroelectric power plant, visit the largest wind farms on the planet, and more! You’ll learn how streets are being designed to generate electricity, how teenagers are making jet fuel from pond scum in their garage, and how 70 million tons of salt can provide free, clean energy 24 hours a day forever! During class, you’ll learn how to bake solar cookies, magni-fry marshmallows and do the experiment with light Einstein won a Nobel prize for that is the basis of all photovoltaic energy today.


Materials:


  • One cup each: hot (not boiling), cold, and room temperature water
  • Cardboard box, shoebox size or larger.
  • Aluminum foil
  • Plastic wrap (like Saran wrap or Cling wrap)
  • Hot glue, razor, scissors, tape
  • Wooden skewers (BBQ-style)
  • Black construction paper
  • Cookie dough (your favorite kind!)
  • Chocolate, large marshmallows, & graham crackers if you want to make s’mores! If not, try just the large marshmallow.
  • Large page magnifier (also called a Fresnel lens, found at drug stores or places that also sell reading glasses, or at Amazon.com)
Please login or register to read the rest of this content.

Crystals are formed when atoms line up in patterns and solidify.  There are crystals everywhere — in the form of salt, sugar, sand, diamonds, quartz, and many more!


To make crystals, you need to make a very special kind of solution called a supersaturated solid solution.  Here’s what that means: if you add salt by the spoonful to a cup of water, you’ll reach a point where the salt doesn’t disappear (dissolve) anymore and forms a lump at the bottom of the glass.


The point at which it begins to form a lump is just past the point of saturation. If you heat up the saltwater, the lump disappears.  You can now add more and more salt, until it can’t take any more (you’ll see another lump starting to form at the bottom).  This is now a supersaturated solid solution.  Mix in a bit of water to make the lump disappear.  Your solution is ready for making crystals.  But how?


Please login or register to read the rest of this content.

penny-structureThe atoms in a solid, as we mentioned before, are usually held close to one another and tightly together. Imagine a bunch of folks all stuck to one another with glue. Each person can wiggle and jiggle but they can’t really move anywhere.


Atoms in a solid are the same way. Each atom can wiggle and jiggle but they are stuck together. In science, we say that the molecules have strong bonds between them. Bonds are a way of describing how atoms and molecules are stuck together.


There’s nothing physical that actually holds them together (like a tiny rope or something). Like the Earth and Moon are stuck together by gravity forces, atoms and molecules are held together by nuclear and electromagnetic forces. Since the atoms and molecules come so close together they will often form crystals.


Try this experiment and then we will talk more about this:
Please login or register to read the rest of this content.


Can we really make crystals out of soap?  You bet!  These crystals grow really fast, provided your solution is properly saturated.  In only 12 hours, you should have sizable crystals sprouting up.


You can do this experiment with either skewers, string, or pipe cleaners.  The advantage of using pipe cleaners is that you can twist the pipe cleaners together into interesting shapes, such as a snowflake or other design.  (Make sure the shape fits inside your jar.)


Please login or register to read the rest of this content.

We’re going to take two everyday materials, salt and vinegar, and use them to grow crystals by creating a solution and allowing the liquids to evaporate.  These crystals can be dyed with food coloring, so you can grow yourself a rainbow of small crystals overnight.


The first thing you need to do is gather your materials.  You will need:


Please login or register to read the rest of this content.

Geodes are formed from gas bubbles in flowing lava. Up close, a geode is a crystallized mineral deposit that is usually very dull and ordinary-looking on the outside.  When you crack open a geode, however, it’s like being inside a crystal cave.  We’ll use an eggshell to simulate a gas bubble in flowing lava.


We’re going to dissolve alum in water and place the solution into an eggshell. In real life, minerals are dissolved in groundwater and placed in a gas bubble pocket.  In both cases, you will be left with a geode.


Note: These crystals are not for eating, just for looking.


Please login or register to read the rest of this content.



This experiment is for advanced students. Water Glass is another name for Sodium Silicate (Na2SiO3), which is one of the chemicals used to grow underwater rock crystal gardens. Metal refers to the metal salt seed crystal you will use to start your crystals growing.  You can use any of the following metals listed.  Note however, that certain metals will give you different colors of crystals.


Your crystals begin growing the instant you toss in the seed crystals.  These crystals are especially delicate and fragile – just sloshing the liquid around is enough to break the crystal spikes, so place your solution in a safe location before adding your seed crystals.


After your garden has finished growing to the height and width you want, simply pour out the sodium silicate solution and replace with fresh water (or no water at all).  Due do the nature of these chemicals, keep out of reach of small children, and build your garden with adult supervision.


Here’s what you need to get:


Please login or register to read the rest of this content.

Charcoal crystals uses evaporation to grow the crystals, which will continue to grow for weeks afterward.  You’ll need a piece of very porous material, such as a charcoal briquette, sponge, or similar object to absorb the solution and grow your crystals as the liquid evaporates.  These crystals are NOT for eating, so be sure to keep your growing garden away from young children and pets! This project is exclusively for advanced students, as it more involves toxic chemicals than just salt and sugar.


Please login or register to read the rest of this content.